S.I.G.L.E. Allowing blank symbols in words makes a difference.

Allowing blank symbols in words makes a difference.

Abstract. We construct a language with possible blank symbols in its words. This language is
decided by a polynomial time non deterministic Turing machine. However, this language is decided
by no deterministic Turing machine.

1. Introduction.

Proving that P # NP is difficult for many reasons. Here are three of them.

(a) A deterministic Turing machine (DTM) is not very different from a non deterministic Turing
machine (NDTM).

(b) The set of polynomial time DTMs is not recursively enumerable. Hence it is very difficult to
check whether a word codes a polynomial time DTM.

(c) Tt is even more difficult for a single polynomial time NDTM (that runs for instance in O(n?)
steps) to catch the set of polynomial time DTMs that run in O(n*) steps for arbitrarily large
integers k.

Unfortunately, you will not find in this paper a short proof that P # NP. However we will try to
deal with the difficulties we have mentioned. According to the point (b), it is easier to consider
all the DTMs instead of the polynomial time DTMs only. Allowing blank symbols in inputs will
enable us to prove a result that goes in the direction of P # NP.

2. Extended languages.

Definition. We fix a finite alphabet ¥ which is common to every TMs and a coding of DTMs by
finite words C' that represent all the possible transitions of the coded DTM M (C) like it is usually
done in the definitions of universal machines. Let T be the set of these codes C'. Initially the tapes
are fulfilled with blank symbols o. Hence an input w is viewed as wo*>°. We allow that a code C
can be extended with a finite sequence of blank symbols o followed by a symbol e. Let S be the
set of these codes C or Co"e for every finite integer k > 0. We say that a language like S, which
can contain words that end with a finite sequence of blank symbols followed by a e, is an extended
language. Let NP° be the set of extended languages decided by polynomial time NDTMs and
let DTIME® be the set of extended languages decided by DTMs.

The extensions of codes enable to artificially increase their lengths in order to integrate a kind of
time counter. That will be a possible answer for the point (c).

3. NP° versus DTIME®.

We are going to separate the complexity classes NP° and DTIME®. The method is quite artificial
but it is not very complicated.

Theorem. There exists an explicit extended language L with L € NP° and L ¢ DTIME®.

Proof. This extended language L is a subset of the extended language S. We construct a NDTM N
that decides this language L and we explain how works N on an input w. First, N enters in a
non deterministic stage : N guesses a word x with x empty or of the form o*e. Then N checks
whether w = Cz where C' € T. If this guessing stage succeeds, then w = C or w = Co*e and w
lies in S. Then C is copied on the second tape, w is copied on the third tape and 1™ is written
on the first tape. Then N checks by simulation whether the DTM M (C) (coded on the second
tape) accepts or rejects w (written on the third tape) in at most n = |w| steps (one step for each
symbol 1 on the first tape). If that is not the case then N rejects w. Otherwise N returns the

1

S.I.G.L.E. Allowing blank symbols in words makes a difference.

opposite answer of M (C) : if M(C) rejects w then N accepts w and if M(C) accepts w then N
rejects w. Let L be the subset of S made of all the inputs accepted by N. The computation of N
shows that L € NP° : the guessing stage takes O(n?) steps because codes with non deterministic
transitions must be rejected and the simulation of at most n steps of M (C) on w takes also O(n?)
steps.

Assume that for some D € T, the DTM M (D) decides the language L. Two cases are possible :

1) If D € L then N accepts D. There exists for N an accepting computation on the input D if N
guesses an empty word x, recognize that D € S and only if the simulation of M (D) on D ends by
a rejection in at most |D| steps. Hence D ¢ L because M (D) is supposed to decide L. But D was
supposed to belong to L.

2) If D ¢ L then M (D) rejects D in at most K steps for some finite integer K because M (D) is
supposed to decide L in finite time. Now, we consider the extended code Do e. The DTM M (D)
will also reject Doe because M (D) will not be able to make a difference between D and Doe
since M (D) takes at most K steps on the tape with the word Do>. Hence M (D) will reject Do*e
in at most K < |Do%e| steps. There exists for N an accepting computation on the input Do%e.
It is sufficient for NV to guess the word x = o®e, recognize that Do*e € S and verify that M (D)
rejects Do in at most |Doe| steps. Hence N accepts DoXe and Do¥fe € L. But Doe is
rejected by M (D).

In both cases there is a contradiction. Hence, the hypothesis that some DTM M (D) can decide
the language L is false. Of course, one could imagine another DTM D’ that would try to decide
the language L by taking more time and care on inputs like D and Do*e in order to give then the
correct answers. But the contradictions would appear then with D’ itself. Hence L ¢ DTIME®.

|
4. Conclusion.

First, one can see that the difference between the NDTM N and a DTM is quite small. That
corresponds to the point (a). However, in the context of this work, this difference makes a single
polynomial time NDTM stronger than every DTMs. Secondly, the author hopes that the ideas
of this paper will be improved for obtaining stronger results. Thirdly, this short paper justifies
the research in the field of quantum computers and for new models of computation like our recent
work based on linear algebra : “Machines Matricielles”

S.I.G.L.E. (Special Investigation Group for Life on Earth) www.sigle.space

