S. Burckel Trees are graceful.

Trees are graceful.

Dr Serge Burckel, Reunion Island University, France.

Abstract. We answer the question of Ringel-Kotzig about graceful labelings of trees.

Definition. For every $N \ge 1$, a N-tree is an undirected connected acyclic graph G = (V, E) with N = |V| vertices. Hence G has N-1 = |E| edges denoted $\{x,y\}$. For every $M \ge N$, a M-labeling of G is an injection σ from V to $[0,\ldots,M-1]$ such that the coloring of edges with $\sigma(\{x,y\}) = |\sigma(x) - \sigma(y)|$ is an injection from E to $[1,\ldots,M-1]$. The N-tree G is said graceful when it has a N-labeling.

Observe that a N-labeling of a N-tree and the corresponding coloring of edges are both bijective.

Theorem. Every N-tree is graceful.

We will prove this statement by induction on N. We need more definitions.

Definition. Let G be a N-tree.

A vertex x is a leaf of G when it belongs to exactly one edge. Otherwise, x is a link. For M > N, a M-labeling of G is z-free for some z in $[1, \ldots, M-1]$, when no vertex has the label z and no edge has the color z.

Observe that every N-labeling of a tree is a N free (N+1)-labeling of this tree.

Proposition. For every $N \ge 1$ and every N-tree G,

 (g_N) : there exists a N-labeling σ of G.

 (f_N) : for every vertex x of G, there exists a z-free (N+1)-labeling ρ of G with $\rho(x)=0$.